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Abstract. Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high mag-
netic fields in Y- and Bi-based high-Tc superconductors are presented. We describe the experimental
technique and test measurements on a simple metal (niobium). In the high-Tc superconductors kxx and
kxy increase below Tc and show a maximum in their temperature dependence. kxx has contributions from
phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy
below Tc gives direct evidence for a strong enhancement of the QP contribution to the heat current and
thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of
kxx we separate the electronic thermal conductivity (kel

xx) of the CuO2-planes from the phononic thermal
conductivity (kph

xx). In YBa2Cu3O7−δ k
el
xx shows a pronounced maximum in the superconducting state.

This maximum is much weaker in Bi2Sr2CaCu2O8+δ, due to stronger impurity scattering. The maximum
of kel

xx is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices.
An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O7−δ,
reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single
crystals. Our data analysis reveals that below Tc as in the normal state a transport (τ ) and a Hall (τH)
relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is
strongly enhanced in the superconducting state, whereas τH displays the same temperature dependence
as above Tc. We determine also the electronic thermal conductivity in the normal state from kxy and the
electrical Hall angle. It shows an unusual linear increase with temperature.

PACS. 74.72.-h High Tc compounds – 74.25.Fy Transport properties (electric and thermal conductivity,
thermoelectric effects, etc.)

1 Introduction

Heat transport in the superconducting state is well known
to provide valuable information on the quasiparticle (QP)
excitations and their dynamics. For example, the order
parameter symmetry as well as the QP relaxation time
can be obtained by analyzing the thermal conductivity,
kxx. Compared to other probes of the QP-dynamics, such
as the microwave conductivity, thermal transport has the
advantage of probing only the QP-response, since the su-
perfluid does not carry heat.
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A characteristic feature of YBa2Cu3O7−δ close to op-
timum doping is a pronounced maximum of the ther-
mal conductivity in the superconducting state [1–14].
The position and the height of this maximum depend
strongly on the sample quality and it is suppressed by a
magnetic field [3–5,10,14]. The interpretation of this be-
havior in terms of QP-dynamics requires a drastic sup-
pression of the QP-scattering rate below Tc, which over-
compensates the decrease of the number of QPs [7]. Such
a behavior of the scattering rate has been inferred earlier
from the microwave surface resistance [15–19]. It provides
strong evidence for an electronic origin of the scattering
processes in the cuprates. Yet, the interpretation of the
maximum of kxx is ambiguous, since in the cuprates a
substantial part of the heat is carried by phonons. The
phononic contribution kph

xx to the thermal conductivity
may also be enhanced below Tc, since the scattering of
phonons on electrons is reduced in the superconducting
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state [1,6,8]. Such a behavior of kph
xx is known from con-

ventional superconductors [1].
A separation of the QP- and phonon heat currents

is difficult. Usually it is attempted on the basis of the
Wiedemann-Franz law, which relates kel

xx to the electri-
cal conductivity σxx, i.e. kel

xx = LTσxx, where L is the
Lorenz-number. However, in the superconducting state
this requires a (model dependent) determination of the
QP-contribution to σxx from the combined superfluid and
QP-response to electric fields [15]. Moreover, in contrast to
the normal state, in a superconductor L may be tempera-
ture dependent even for purely elastic scattering, as a con-
sequence of different coherence factors for electrical and
thermal transport effects [20]. Another approach towards
a separation of kel

xx and kph
xx is to exploit the magnetic field

dependence of kxx [10]. However, since both the electronic
and the phononic heat current may in principle depend on
the magnetic field [10,21,22], additional information on
one of the contributions must be inferred from other exper-
imental data. Finally, it has been attempted to determine
kph
xx from measurements of the thermal conductivity of the

insulating parent compounds of the cuprates [12]. This is,
however, also ambiguous, since the thermal conductivity
of these insulators is doping dependent and shows anoma-
lous behavior itself, possibly due to magnetic contribu-
tions to the heat current [12] or due to stripe phases [23]
and tilt distortions [24] and their coupling to the phonons.

It is therefore useful to measure the transverse ther-
mal conductivity kxy, also called the Righi-Leduc or
thermal Hall effect, in addition to the field dependent ther-
mal conductivity [25–30]. The Righi-Leduc effect is the
thermal analogon of the Hall effect. It has been pointed
out in references [25,26] that phonons do not contribute
to kxy, i.e. kxy is purely electronic and contains direct
information on the QP relaxation time. However, regard-
ing transport in a magnetic field one additional complica-
tion arises: Detailed studies of the normal state electrical
transport phenomena show that a consistent description
of the experimental data requires the distinction of two
relaxation times in the cuprates [33,34]. A longitudinal
(transport) relaxation time τ enters the dc conductivity
σxx ∝ τ , whereas a transverse Hall relaxation time τH en-
ters the Hall conductivity σxy ∝ ττH and thus determines
the Hall angle tanαH = σxy/σxx ∝ τH. Experimentally,
from σxx and σxy, τ and τH have distinctly different tem-
perature dependencies. Given this behavior of electrical
transport properties one expects a similar scenario also
for the (electronic) thermal transport, i.e. kxx ∝ τ and
kxy ∝ ττH.

There are further complications in the interpretation
of experimental results. In YBa2Cu3O7−δ CuO-chains are
present along the b-direction of the orthorhombic crys-
tal structure in addition to the CuO2-planes common to
all HTSCs. These chains lead to a rather strong in-plane
(a-b) anisotropy of the electronic properties [31–33] and
in particular of the electronic thermal conductivity [7,11].
Moreover, in the superconducting state vortices carry heat
and they are known to move in an applied temperature
gradient [35,36]. They contribute therefore to the longitu-

dinal and transverse heat currents, if their motion is not
prevented by pinning [37]. In the cuprates this contribu-
tion may be present in a wide range of temperatures and
magnetic fields above the irreversibility line.

In this paper we present measurements of the thermal
conductivity and the thermal Hall effect of YBa2Cu3O7−δ
(YBCO) and Bi2Sr2CaCu2O8−δ (BSCCO) in high mag-
netic fields. kxx and kxy are found to increase below Tc

and to show a maximum in their temperature dependence
in both, Bi- and Y-based materials. Since kxy is purely
electronic this tells that the quasiparticle heat current is
strongly enhanced below Tc, which gives direct evidence
for a strong increase of the QP mean freepath. We sep-
arate the QP from the phononic contribution using kxy
and the magnetic field dependence of kxx. The main re-
sults from this data analysis are: (1) kel

xx(B) shows a pro-
nounced maximum below Tc which is strongly suppressed
by a magnetic field. (2) An additional magnetic field inde-
pendent maximum of the thermal conductivity is found in
YBCO, reminiscent of the contribution to kxx due to the
CuO-chains. (3) For kph

xx we find no indication of a maxi-
mum or of a significant magnetic field dependence. (4) The
vortex contribution to kxy is negligibly small compared to
the QP- and phononic contributions. (5) Our data anal-
ysis reveals distinct Hall and transport relaxation times,
consistent with what is known for the normal state of the
cuprates [33,34]. The transport relaxation time is strongly
enhanced below Tc and becomes magnetic field dependent,
whereas the Hall relaxation time shows the same field and
temperature dependence in the superconducting and in
the normal state. (6) We determine the electronic thermal
conductivity in the normal state from kxy and the elec-
trical Hall angle. kel

xy(T > Tc) exhibits an unusual linear
temperature dependence.

2 Theoretical background

2.1 Thermal transport

2.1.1 Definitions

Thermal transport is usually described [38] in analogy to
electrical transport, i.e. one defines a thermal conductivity
tensor kel via

jh = −k∇T (1)

in analogy to the electric conductivity tensor σ defined by
j = σE. Here j and jh are the electric and heat current
density, respectively, E is the electric field and T is the
temperature.

For our discussion of the cuprates we choose the x-,
y-, and z-directions along the orthorhombic a, b, and c-
directions, where the c-direction is perpendicular to the
CuO2-planes. When a magnetic field is applied along
the z-direction the transport tensors have 4 independent
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coefficients each, i.e.

k =

 kxx kxy 0
−kxy kyy 0

0 0 kzz

 (2)

and similarly for the conductivity tensor. If twined crystals
are studied the number of components is reduced further,
since kxx = kyy and σxx = σyy . Experimentally the com-
ponents of the electrical (ρ) and thermal resistivity (W )
tensors are measured. The components of σ and k are ob-
tained by inversion of ρ and W , which yields e.g. for the
in-plane components of k: kxx = Wyy/D; kyy = Wxx/D
and kxy = −Wxy/D where D = WxxWyy +W 2

xy.
Consider a situation where a magnetic field is applied

along the z-direction and an electrical current flows along
the x-direction, i.e. j = (jx, 0, 0). Then, due to the Hall
effect, an electrical field Ey develops in the y-direction.
In complete analogy a thermal Hall effect occurs if we
substitute j → jh and E → −∇T . In this case a heat
current jh,x = −kxx∇xT along the x-direction leads to a
transverse temperature gradient ∇yT in the y-direction,
if no heat current in the y-direction is allowed to flow, i.e.
if jh,y = 0. This is the Righi-Leduc or thermal Hall effect.
Applying equations (1) and (2) to this situation yields

jh,y = 0 = kxy∇xT − kyy∇yT (3)

and thus

kxy = kyy
∇yT
∇xT

· (4)

In the following we distinguish an electrical (αH) and
a thermal (αR) Hall angle by defining:

tanαH =
σxy
σyy

=
Ey
Ex

(5)

and

tanαR =
kxy
kyy

=
∇yT
∇xT

· (6)

For completeness, we mention that a Righi-Leduc coeffi-
cient RR = ∇yT/jh,xBz is defined in analogy to the Hall
coefficient RH = Ey/jxBz.

2.1.2 Phonon contribution to the heat current

In the preceding section we have considered the electronic
thermal and electrical transport processes. Naturally there
is also a phonon contribution to the heat flow. In sim-
ple metals this contribution is usually much smaller than
that of the conduction electrons and may be neglected.
However, this is not always the case and certainly not for
the cuprates, where a substantial part of the heat cur-
rent is phononic [1]. In this case, defining the phononic
and electronic thermal conductivity tensors kph and kel,

respectively, the total thermal conductivity tensor of equa-
tion (1) is given by

k = kel + kph. (7)

Note that if other channels of heat conduction are present
the corresponding tensors must be added.

It has been pointed out in references [25,26] that kph

is usually diagonal even for B 6= 0. In this case the to-
tal transverse thermal conductivity kxy is electronic. We
shall make this assumption throughout this paper and set
kel
xy ≡ kxy in the following. With the experimental condi-

tions appropriate for the measurement of the Righi-Leduc
effect (as defined in the previous section) we find from
equations (4) and (7):

kxy ≡ kel
xy = kyy

∇yT
∇xT

=
[
kel
yy + kph

yy

] ∇yT
∇xT

· (8)

Clearly, kxy can be determined experimentally by mea-
suring ∇yT , ∇xT and the total thermal conductivity kyy.
Note that, whereas kxy is purely electronic, the thermal
Hall angle tanαR (Eq. (6)) as obtained from the measured
temperature gradients is in general not.

2.1.3 Wiedemann-Franz law

According to standard transport theory the electronic
thermal and electrical conductivities are related by the
Wiedemann-Franz law. This law in its general form re-
lates the corresponding tensors:

kel = LTσ. (9)

Here L is the Lorenz number, which for free electrons has
the value L0 = (π2/3)(kB/e)2 ' 2.44× 10−8 (V/K)2. The
Wiedemann-Franz law is valid under rather general condi-
tions and does in particular not rely on the relaxation time
approximation. In the normal state it holds if (i) scatter-
ing processes are elastic and (ii) if any energy dependence
of the collision integral may be neglected. In the supercon-
ducting state the situation is more complicated: Even for
purely elastic scattering the Wiedemann-Franz law may
not be fulfilled, because of different coherence factors for
electrical and thermal transport [20].

Taking the magnetic field along the z-direction, the
free electron result for σ and kel is

kel = L0Tσ = L0Tσ0

 1
1+α2 − α

1+α2 0
α

1+α2
1

1+α2 0
0 0 1

 . (10)

Here σ0 = ne2τ/m is the Drude-conductivity, n is the
electron density, and m the effective mass. α = ωcτ , where
ωc = eB/m is the cyclotron frequency. The Hall angles are
then given by

tanαR = tanαH = ωcτ. (11)
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Fig. 1. Schematic setup used for the measurements (see text).

2.2 Hall and transport relaxation times

In simple metals it is usually sufficient to describe the
longitudinal and transverse transport properties using a
single relaxation time τ . In contrast, it is well known that
in the cuprates a consistent description of the data on such
a basis is not possible [33,34]. The reason is that tanαH

as measured from the Hall effect and the resistivity has
a temperature dependence different from that of σxx (see
also Fig. 5). In optimally doped samples it is found that

σxx ∝ τ ∝ T−1, (12)

whereas

tanαH = ωcτH ∝ T−2. (13)

Since the effective (cyclotron) mass entering ωc = eB/m
is usually temperature independent [39] it is common to
define a Hall relaxation time τH to account for the tem-
perature dependence of tanαH (see e.g. [33,34]).

Several scenarios have been proposed in order to justify
the use of two relaxation times for the normal state trans-
port properties of the cuprates, reaching from a break-
down of Fermi-liquid theory in favor of a novel metallic
groundstate to more conventional scenarios, which exploit
a strongly anisotropic scattering rate over the Fermi sur-
face [40–49]. We shall discuss these issues in more detail
below. At this point we regard the distinction between τ
and τH as a definition, introduced to obtain a consistent
description of the experimental data. Nevertheless, given
the distinction of τ and τH from electrical transport one
expects on the basis of the Wiedemann-Franz-law a similar
distinction for the electronic thermal transport properties,
i.e. kel

xx ∝ τ and kxy ∝ ττH.

3 Experimental

3.1 Measurements

All measurements were performed with the magnetic field
parallel to the c-direction and all temperature gradients,
currents, and voltages perpendicular to the c-direction.

For the measurements of k a longitudinal temperature
gradient was produced by a manganin heater mounted on
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Fig. 2. Upper panel: Variation of the magnetic field B (full
line) and the heating current Ih (dotted line) as a function
of time. Lower panel: Time dependence of the thermovoltage
Uy ∝ ∇yT . The voltages within the plateaus are constant
within ±5 nV.

top of the sample (Fig. 1). The temperature gradients were
measured with AuFe-Chromel thermocouples which were
calibrated carefully in magnetic fields up to 14 T (see be-
low). All measurements were carried out under adiabatic
conditions (i.e. jh,y = 0) at constant temperature and
magnetic field. We used a Lakeshore 93CA temperature
controller and Cernox CX-1050 sensors to measure and to
control the temperature of the sample holder. The temper-
ature stability achieved in our measurements was better
than ± 5 mK. Typically, temperature gradients ∇xT of
the order of 0.5 K/mm were applied. The resulting trans-
verse temperature gradients ∇yT in magnetic fields of or-
der 10 T were of order 0.01 K/mm. The resolution of the
thermocouple voltage is of the order ±5 nV. It is deter-
mined basically by the stability of the sample temperature
and it allows for the determination of temperature gradi-
ents with a resolution in the range of mK.

Since ∇yT/∇xT � 1 in the weak field limit exploited
in our experiments one has to separate offset voltages due
to misalignment of the thermocouple in the determina-
tion of the transverse temperature gradient∇yT . We have
therefore measured for both orientations ±B of the mag-
netic field in order to determine the component of ∇yT
which is asymmetric with respect to reversal of the field
direction. Figure 2 shows a typical measurement run at a
fixed temperature. After the heater is turned on a steady
state is achieved within 5 to 15 min. Then the heater
is turned off in order to determine the background ther-
mopower. The same procedure is repeated after reversal
of the magnetic field. ∇yT can then be determined from

Uy =
(UB,I − UB,0)− (U−B,I − U−B,0)

2
· (14)

where I and 0 correspond to finite and zero heater cur-
rent, respectively. The magnetic field was reversed at fixed
temperature for temperatures above the irreversibility
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Fig. 3. Experimental setup used for the calibration of the
thermocouple for the temperature range between 4.2 and 30 K
(see text).
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range. Above about 40 K S is only weakly field dependent
(∆S/S ≤ 4%).

line [35]. For measurements below the irreversibility line
we have heated the sample to temperatures above Tc be-
fore the field was reversed in order to avoid errors due
to pinning effects. The Cernox sensors used here have a
weak magnetic field dependence (∆T/T is less than 0.7%
for 14 T). However, this field dependence does not lead to
errors in our measurements because it is symmetric with
respect to field reversal.

We have also measured the in-plane resistivity ρ and
the Hall coefficient RH using a standard ac-lock-in tech-
nique.

3.2 Calibration

For our experiments we have used Au/0.07 at.% Fe
Chromel P type thermocouples (Leico Industries Inc.).
These thermocouples have a rather small diameter of
0.076 mm to avoid a thermal short circuit when mounted

to the sample, and furthermore they have a good sensitiv-
ity in the temperature range from 4.2 K to room temper-
ature. However, because of their magnetic field dependent
thermopower S(B) a calibration for measurements in high
magnetic fields is necessary. We have calibrated the mag-
netic field dependence accurately by using two different
methods: For the temperature range above 30 K the cali-
bration was done using a piece of α-quartz crystal. With
the same setup as for the measurements of the thermal
conductivity, the thermocouple and a small heater were
mounted on the quartz crystal. As the thermal conduc-
tivity of quartz does not depend on the magnetic field,
S(B)/S(B = 0) can be determined directly for different
temperatures by sweeping the magnetic field (for a con-
stant heater power). We have found that above about 40 K
the magnetic field dependence of the thermopower is weak
(∆S/S ≤ 4%).

Below 30 K the calibration according to the method
described above turned out to be problematic: The small
field dependence of the Cernox sensors causes tempera-
ture variation of the sample holder as the magnetic field
is sweeped. This leads to errors, because the temperature
dependence of the thermal conductivity of quartz is large
in this temperature range. We have therefore used a dif-
ferent method for the calibration between 4.2 K and 30 K.
Figure 3 shows the experimental setup. We used two cop-
per bars (l = 130 mm), one of them with an attached
heater wire which was wound regularly around it. The
two bars were in thermal contact via two copper discs and
4He gas. A well defined temperature difference could be
maintained between the copper bars. Three thermocouples
were mounted to this setup as shown in Figure 3. The ther-
mocouple mounted along one of the bars was used to check
that no temperature gradient builds up along the bars dur-
ing the measurements. The setup was placed in the mag-
net with one end in its center (B = Bc) and the other end
being in a much smaller magnetic field (B∗ = 0.331Bc).
The magnetic field was swept continuously from zero to
14 T measuring S(Bc)/S(B∗) at various fixed tempera-
tures. Using these data (S(B)/S(B = 0))T=const. was de-
termined. Figure 4 shows the thermopower S(T ) of the
thermocouple as determined for different magnetic fields
from (S(B)/S(B = 0))T=const. and the zero field S(T )
calibration. Note that the accuracy of our measurements
of the field dependent thermal conductivity is determined
mainly by the magnetic field dependence of the thermo-
couple.

3.3 Specimen

The YBa2Cu3O7−δ sample used in our measurements is
a high quality twined single crystal (≈ 2 × 2 × 0.4 mm)
grown from the flux. It has a superconducting transition
temperature of Tc ' 90.5 K with a transition width of
about ∆Tc ' 0.6 K. This value of Tc indicates that the
sample is nearly optimally doped. The resistivity and the
(inverse) Hall coefficient of this sample as a function of
temperature are shown in the upper panel of Figure 5.
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Table 1. Selected data on the YBCO and BSCCO sam-
ples used in the present study. The values in brackets for
BSCCO give results obtained for another crystal of the same
batch. ρxx is the resistivity and RH is the Hall coefficient.
kel,L
xx is calculated from ρxx using the Wiedemann-Franz law,

i.e. kel,L
xx = L0T/ρxx. Lxy/L0 is the relative Lorenz num-

ber calculated from the transverse transport coefficients ac-
cording to Lxy/L0 = kxy/(L0Tσxy). kel,T

xx is calculated from
kel,T
xy = kxyσxx/σxy (see Eq. (20) and Fig. 21). It should be

corrected for the chain contribution. (See text.)

T (K) YBCO BSCCO
ρxx (µΩ m) 100 2.5 10 (20)

200 3.8 12.5 (22.5)
RH (10−9 Vm/AT) 100 3.75 14

200 1.5 9
kel,L
xx (W/Km) 100 0.98 0.25 (0.125)

150 0.3
200 1.29 0.39 (0.22)

Lxy/L0 100 1.78 2.9
150 2.65 3.3

kel,T
xx (W/Km) 100 1.8 0.75

150 2.4 1.0
200 3.5

ρxx varies linearly with T in the normal state and it ex-
trapolates to a rather low value for T → 0. The absolute
value of order 2.5 µΩ m close to Tc is rather low compared
to other twinned crystals. These findings signal a good
crystal quality and, in particular, that impurity scattering
is weak compared to the inelastic, temperature dependent
scattering processes. The linear temperature variation of
the resistivity confirms that the sample is nearly optimally
doped. The Hall coefficient RH increases with decreasing
temperature. The results are comparable to those of pre-
vious studies. The strong temperature dependence of RH

is characteristic for the cuprates (see Sect. 2).
The Bi2Sr2CaCu2O8+δ single crystals (≈ 1 × 1 ×

0.05 mm) were also grown from the flux. They have a su-
perconducting transition temperature of Tc ' 80 K, which
indicates that these crystals are not optimally doped.
It turned out to be difficult to remove the silver epoxy
contacts used for the electrical measurements from the
BSCCO samples without damaging them. We have there-
fore used different samples from the same batch for the
electrical and thermal measurements. The resistivity and
the (inverse) Hall coefficient of one of the BSCCO sam-
ples is shown in the lower panel of Figure 5. Note that the
absolute value of the resistivity and the weaker tempera-
ture dependence signal that the BSCCO crystals contain
significantly more defects than the YBCO crystal. An ad-
ditional complication with the BSCCO crystals was that
different samples from the same batch did not show the
same resistivity behavior (see Tab. 1). This may be related
to structural defects, microcracks, or to grain boundaries
in crystals composed from several crystallites. The Hall
coefficient RH also increases with decreasing temperature.

All crystals used in our study are twined so that there
is no a-b-anisotropy. We therefore set σxx = σyy and kxx =
kyy in the following.
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Fig. 5. In-plane resistivity ρab (right scale) and inverse Hall
coefficient 1/RH (left scale) versus temperature of YBCO (up-
per panel) and BSCCO (lower panel). The straight lines are
linear fits to the data used later for the extrapolation of the
electrical Hall angle tanαH to temperatures T < Tc.

4 Test measurements on niobium

We have measured the thermal Hall effect in niobium in
order to check the reliability of our experimental method.
The specimen used for the measurements were 2 niobium-
foils of dimensions 2× 4× 0.13 mm3 taken from the same
sample. One specimen was used for the electrical and the
other for the thermal measurements.

We show in the upper panel of Figure 6 the ratio
tanαR ≡ ∇yT/∇xT as a function of the magnetic field at
various fixed temperatures. Note that in niobium the elec-
tronic contribution to the heat current is much larger than
the phononic contribution and that therefore, in contrast
to the cuprates, tanαR is purely electronic. As expected
tanαR varies linearly with B. We have also verified that
∇yT varies linearly with the heating power, as shown in
the lower panel of Figure 6. The temperature dependence
of tanαR measured at B = 14 T is shown in Figure 7. We
find that tanαR is of order 10−3 in 1 T at temperatures
around 100 K and one order of magnitude larger at low
temperatures. It increases with decreasing temperature,
as expected, since tanαR ∝ τ (see Eq. (11)) and τ ∝ T−1

due to electron phonon scattering, consistent with the be-
havior of the resistivity (see inset Fig. 7).

Since tanαR is electronic we obtain from the
Wiedemann Franz law (Eq. (9)) and the definition of the
transport coefficients that

tanαR =
kxy
kel
xx

=
LxyTσxy
LxxTσxx

=
Lxy
Lxx

BRH

ρxx
, (15)
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where we have used that σxy ' BRHσ
2
xx and σxx ' ρ−1

xx
in the weak field limit ωcτ � 1. Here we have defined
the longitudinal and transverse Lorenz numbers, Lxx and
Lxy, respectively. The Wiedemann Franz law (Eq. (9))
tells that Lxx = Lxy. Then equation (15) leads to

ρxx =
BRH

tanαR
· (16)

We compare in the inset of Figure 7 the temperature de-
pendences of the electrical resistivity of the niobium sam-

ple and of BRH(30 K)/ tanαR, both obtained from our
measurements. The agreement is very good within the ex-
perimental accuracy and demonstrates the reliability of
our experimental method for determining the Righi-Leduc
effect.

The deviations between ρxx and BRH/ tanαR at
higher temperatures (see Fig. 7) may be due to a weak
temperature dependence of the Hall coefficient. Alterna-
tively, they may be due to a failure of the Wiedemann
Franz law. In this case the Lorenz numbers are usually
temperature dependent. It has been pointed out in refer-
ence [30] that the temperature dependencies of Lxx and
Lxy may be different so that Lxx(T ) and Lxy(T ) do not
cancel in equation (15). For example, inelastic scattering
processes give different mean-free paths for the entropy
(`S) and charge (`e) currents. In this case Lxx ∝ `S/`e,
but Lxy, which involves the squares of the mean free paths
(see Eq. (10)), is given by Lxy ∝ `2S/`2e ∝ L2

xx. This is con-
firmed by a recent study on copper [30].

5 Experimental results

5.1 YBa2Cu3O7−δ

The thermal conductivity kxx of the YBCO sample in zero
magnetic field as a function of temperature is shown in
the upper panel of Figure 8. kxx decreases with increasing
temperature in the normal state. The absolute value at Tc

is of order 10 W/Km. kxx increases drastically below Tc

and reaches a maximum at Tp ≈ 38 K. This behavior of
kxx confirms results on YBCO of previous studies [1–14].
We compare some data as found in different studies of
YBCO in Table 2. This comparison reveals the following
systematics: (1) The absolute value of kxx at Tc does not
vary strongly between different studies and is in the range
of 10–15 W/Km. Twined samples are at the lower and
untwined samples are at the higher end of this interval.
(2) The value of kxx at the peak varies much stronger.
Since the largest values of kxx should occur in the clean-
est samples, this suggests to use the ratio kxx(Tp)/kxx(Tc)
as a measure of sample quality. (3) The peak of kxx ap-
pears usually at temperatures Tp around 40 K. However,
Tp is clearly sample dependent. Comparing the data with
the lowest and highest values of kxx(Tp)/kxx(Tc) reveals
a weak correlation with the peak position: The peak oc-
curs at somewhat lower temperatures in samples with a
large value of kxx(Tp)/kxx(Tc). Data on untwined crys-
tals [11,13] indicate that the peak position is somewhat
lower for the thermal conductivity along the b-direction.
This maybe related to a contribution to the maximum of
kxx from the CuO-chains (see below and Fig. 17).

Using the Wiedemann Franz law with L = L0 and the
measured resistivity we find that kel

xx = L0T/ρxx is of the
order 1–2 W/Km in the normal state. We anticipate that
kel
xx obtained from the thermal Hall effect according to our

data analysis (see below) is of about the same magnitude.
Since kxx(T > Tc) ≈ 10 W/Km we conclude that most of
the heat is carried by phonons in the normal state.
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dir. kxx(Tc) kxx(Tp)
kxx(Tp)

kxx(Tc) Tp

Hagen et al. [2] 1 ab 8 9 1.1 60
2 ab 8.5 12 1.4 45

Palstra et al. [3] ab 10 11.5 1.15 60
Peacor et al. [5] 1 ab 12 19 1.6 42

2 ab 14 26 1.9 42
Cohn et al. [8] 1 a 11 21 1.9 45

b 11 18 1.6 48
2 a 13 28 2.1 35

b 13 24 1,8 35
Cohn et al. [9] 1 ab 10 14.5 1.5 45

2 ab 9.5 13.5 1.4 45
3 ab 9 10.5 1.2 50

Yu et al. [7] 1 a 12 24 2.0 45
b 16 29 1.8 45

Takenaka et al. [12] 1 ab 16 32 2.0 40
Aubin et al. [13] 1 b 11 27 2.2 23
Krishana et al. [26] 1 ab 16 27 1.7 40
Gagnon et al. [11] 1 a 11 25 2.3 37

b 14 33 2.4 30
Zeini et al. (this work) 1 10.5 16.5 1.6 38

Table 2. Selected experimental data on the ther-
mal conductivity kxx of single crystals of YBCO
(close to optimum doping) given in W/Km. The
first column lists the number of different crystals
studied. The second column refers to the crystalline
direction: ab: within the CuO2-planes in a twined
crystal; a, b: along the a- and b-direction, respec-
tively. The CuO-chains are along the b-direction.
kxx(Tc) and kxx(Tp) are the values of kxx at Tc and
at the maximum, respectively, and Tp is the posi-
tion of the maximum given in K.
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magnetic fields indicated in the figure. Note the different tem-
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The normal state thermal conductivity is independent
of the magnetic field within our experimental resolution.
In contrast, kxx is strongly suppressed by a magnetic field
below Tc as shown in Figure 8. This confirms results on
YBCO of previous studies [3–5,10,14]. The magnetic field
dependence of kxx is shown in Figure 9, where we plot
∆kxx = kxx(B) − kxx(B = 0) as a function of the mag-
netic field at fixed temperatures. kxx varies non-linearly
with B, and the magnetic field dependence changes with
temperature: At the lowest temperatures measured, kxx
has a tendency to become magnetic field independent at
high fields. This is reminiscent of the behavior reported
recently by Krishana et al. for BSCCO [50].

kxy versus temperature at T > Tc is shown in the
upper panel of Figure 10. kxy is positive and of or-
der 10−2 W/Km for B ≈ 1 T. Comparing this to
kxx(Tc) ≈ 10 W/Km reveals that kxy/kxx at 1 T is of the
order 10−3. Since kxx is to a great extent due to phonons
the thermal Hall angle tanαH = kxy/k

el
xx cannot be cal-

culated quantitatively at his point. kxy(T > Tc) de-
creases with increasing temperature, approximately like
kxy ∝ T−p with 1 < p < 2. A distinction between p = 1
and p = 2 cannot be inferred from the data of Figure 10
because of the limited temperature interval. Below Tc kxy
exhibits a pronounced maximum, as shown in the lower
panel of Figure 10. The position of this maximum shifts
slightly to higher temperatures with increasing magnetic
field from about 40 K at B = 3 T to nearly 50 K at
B = 14 T. At first glance the behavior of kxy is rather
similar to that of kxx. However, a more thorough compar-
ison of the data shows that the maximum of kxy occurs at
a higher temperature and that its relative increase below
Tc is much larger.

The magnetic field dependence of kxy is shown in
Figure 11. Above Tc, kxy increases linearly with B, as ex-
pected in the weak field limit (see Eq. (10)). In contrast,
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below Tc the magnetic field dependence of kxy changes
from kxy ∝ B near Tc to non-linear behavior at low tem-
peratures. At the lowest measured temperatures kxy has
a tendency to become independent of B at high magnetic
fields above 3 T. We note that the data of Figure 11 are
similar to the results of a previous study [26]. On the
other hand, we do not find a decrease of kxy with B at
high magnetic fields, in contrast to what is reported in
reference [51].

5.2 Bi2Sr2CaCu2O8+δ

The longitudinal thermal conductivity kxx of BSCCO is
shown as a function of temperature in the upper panel of
Figure 12. kxx is magnetic field independent in the normal
state. In contrast to YBCO it increases slightly with tem-
perature. kxx is of order 3 W/Km near Tc, significantly
smaller than the value found in YBCO. Using the data
of Table 1 we find that kel

xx = L0T/ρxx is of the order
of 0.3 W/Km. Comparing this to the total thermal con-
ductivity reveals that also in BSCCO most of the heat
is carried by phonons in the normal state. Below Tc in
zero field a weak upturn of kxx occurs with a maximum
around 70 K. This maximum is almost completely sup-
pressed when applying a magnetic field of 14 T.

kxy(T ) measured on this sample is shown in the lower
panel of Figure 12. The behavior of kxy is qualitatively
similar to that found in YBCO. In particular, although
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the maximum of kxx below Tc is hardly visible in BSCCO,
kxy clearly shows a pronounced maximum at about 50 K.
Note that in comparison to YBCO in BSCCO the absolute
magnitude of kxy(14T) is smaller by a factor of about 4 in
the normal state close to Tc and by a factor of about 10
at the maximum.

A further clear difference to YBCO is apparent
when inspecting the magnetic field dependence of kxy in
BSCCO, which is shown in Figure 13. In the normal state
kxy ∝ B, as in YBCO. However, below Tc kxy still varies
approximately linearly with B. Weak non-linearity occurs
only at low temperatures and high magnetic fields.

6 Data analysis

6.1 Contributions to the heat current

We assume that kxx is the sum of 3 contributions:

kxx = kel
xx + kch

xx + kph
xx = kel

xx + krest
xx . (17)

Here kel
xx is the electronic thermal conductivity of the

CuO2-planes (in fact, bilayers in YBCO and BSCCO) and
kph
xx is the phononic thermal conductivity. kch

xx is an op-
tional contribution. It must be included in the data anal-
ysis only if an additional electronic channel of heat con-
duction is present with a magnetic field or temperature
dependence different from that of kel

xx. Such a situation
is most probably realized in YBCO, where in addition to
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in the figure. For clarity the curves have been shifted by a value
given by the intersection of the dotted lines (i.e. kxy = 0 for all
curves). The dotted lines ∝ B are a guide to the eye in order to
indicate the deviations from linearity at high magnetic fields
and low temperatures.

the CuO2-planes (pl) common to all HTSCs CuO-chains
(ch) are present along the b-direction of the orthorhombic
crystal structure. In good untwined crystals these chains
lead to a rather strong a-b anisotropy of the electronic
properties. For example, the anisotropy of the electrical
conductivity is of order 2, suggesting that along the b-
direction σch

xx ≈ σpl
xx [31–33]. (Note that in order to avoid

confusion we keep the notation as appropriate for twined
crystals with σxx = σyy and kxx = kyy and denote the
chain contribution by (ch).) Similarly, as expected from
the Wiedemann-Franz law, a large contribution of the
CuO-chains to the heat conductivity has also been estab-
lished experimentally [7,11]. Note that a contribution of
the chains to σxx and kxx occurs even for twined samples
as an in-plane average of σch

xx and kch
xx. Since the CuO-

chains are a one-dimensional channel of conduction the
magnetic field and temperature dependence of kch

xx may
be different from that of kel

xx. In particular, we expect no
magnetic field dependence of kch

xx. Moreover, due to their
one-dimensionality the CuO-chains should also not con-
tribute to the transverse effects, i.e. to kxy and σxy.

In the normal state only the above contributions to the
heat current are relevant in optimally doped cuprates. In
contrast, below Tc in finite magnetic fields an additional
heat current arises from the motion of vortices [35,36]. The
contribution kv

xy of this heat current to the thermal Hall
effect has been calculated in reference [37]. It is given by

kv
xy = − sv

Φ0
ST. (18)
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Here, sv is the transport entropy of a vortex (per unit
length). It is usually obtained from measurements of
the Nernst effect (or the Ettingshausen effect) and the
flux-flow resistivity [3,25,35,52–55]. Φ0 is the flux quan-
tum and S is the thermopower (or Seebeck-coefficient)
[25,35,53–55]. For an estimate we use the data on YBCO
of references [54,55]: sv ≈ 5 × 10−15 J/Km close to
Tc ≈ 90 K and S(Tc) ≈ 2.5 µV/K. This yields kv

xy(Tc) ≈
−5 × 10−4 W/Km. A calculation using the temperature
dependencies of sv and of S shows that |kv

xy| increases with
decreasing temperature below Tc and reaches a maximum
at about 80 K [37]. At the maximum |kv

xy| is of the order
2× 10−3 W/Km, which is about two orders of magnitude
smaller than the measured values of kxy in YBCO (com-
pare Fig. 10). Thus, the vortex contribution to kxy is by
far too small to be relevant for our results and can safely
be neglected in the following. We note that there is also
no anomaly of kxy around the irreversibility line, confirm-
ing that kv

xy does not give a sizeable contribution to kxy.
The contribution of the vortices to the longitudinal heat
current and thus to kxx is of the same magnitude as kv

xy

and therefore negligible [37].
For completeness we mention the so called circulatory

contribution kc
xx to the heat current (see e.g. Ref. [1])

which occurs in superconductors. It is given by kc
xx =

S2T/ρxx. Using ρxx(Tc) ≈ 2µΩ m we find kc
xx ≈ 5 ×

10−3 W/Km, much smaller than the experimental values
for single crystals.

6.2 Separation of the electronic and phononic heat
currents

6.2.1 Wiedemann-Franz law

The electronic and phononic thermal conductivity are of-
ten separated using the Wiedemann-Franz law. On this
basis, if transverse transport phenomena are involved,
there are two ways to determine kel

xx: kel
xx may be calcu-

lated directly from the electrical conductivity σxx accord-
ing to

kel
xx = L0Tσxx. (19)

Here one assumes that the Lorenz-number is a constant,
which is often not the case, in particular when inelastic
scattering processes are important. Alternatively we may
extract kel

xx from the normal state electrical Hall angle and
from kxy, according to

kel
xx =

kxy
tanαR

=
kxy

tanαH
= kxy

σxx
σxy
· (20)

One may expect that this latter method is more general
than the direct calculation from the resistivity since it does
not require the validity of the Wiedemann Franz law, but
only that Lxx(T ) = Lxy(T ). (Compare, however, Eq. (15)
and the corresponding discussion.)

In the superconducting state both methods to de-
termine kel

xx cannot be used in a straightforward way.

The first method requires knowledge of the QP conduc-
tivity. To obtain σxx the superfluid response to electric
fields must be separated from that of the QPs, which re-
quires a (model dependent) analysis [15]. Moreover, the
Wiedemann-Franz law itself is not necessarily fulfilled in
the superconducting state even for elastic scattering [20].
The second method suffers from the lack of knowledge of
the Hall angle below Tc. In addition to the QP conductiv-
ity knowledge of the Hall angle requires a measurement of
the QP Hall effect. Again the superfluid and vortex con-
tributions to the Hall effect would have to be separated
from that of the QPs, which is difficult, in particular in
view of the current incomplete understanding of the Hall
effect in the superconducting state [35].

6.2.2 Thermomagnetic separation

To avoid these difficulties we present in the following a
different route towards a separation of the electronic and
phononic channels of heat conduction, which is based on
the results for kxy and the magnetic field dependence of
kxx. This method does not rely on the validity of the
Wiedemann-Franz law.

We relate the transverse and longitudinal electronic
thermal conductivity (of the CuO2-planes) according to

kxy = kel
xx tanαR = kel

xxωcτR. (21)

We assume here, as discussed above, that the chains do
not contribute to kxy. Equation (21) defines a relaxation
time τR(T,B), which is used to parameterize the temper-
ature and magnetic field dependence of the thermal Hall
angle. The distinction between τ and τR is of course moti-
vated by the distinction between τ and τH necessary in the
normal state for the electrical transport properties. Nev-
ertheless, we leave open at this point whether τR must be
identified with the transport or the Hall relaxation time
(and whether a distinction of two relaxation times is nec-
essary at all).

The key experimental observation underlying the anal-
ysis is that ∆kxx = kxx(B)− kxx(B = 0) and kxy/B have
the same magnetic field dependence, i.e.

∂

∂B

(
kxy
B

)
∝ ∂kxx

∂B
· (22)

This is shown in Figure 14. Since kxy is purely electronic,
the only reasonable interpretation of this finding is that
the magnetic field dependence of kxx is entirely due to
that of kel

xx. This may be seen by noting that

m

e

∂

∂B

(
kxy
B

)
= τR

∂kel
xx

∂B
+ kel

xx

∂τR
∂B

=

τR
∂kxx
∂B

+
[
kel
xx

∂τR
∂B
− τR

∂kph
xx

∂B
− τR

∂kch
xx

∂B

]
(23)

by equations (21) and (17). Obviously, our experimental
results (Eq. (22)) suggest that the term in brackets van-
ishes. Since the 3 terms in brackets refer to 3 different
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channels of heat conduction this requires that τR, kph
xx,

and kch
xx are separately field independent so that indeed

∂kxx
∂B

' ∂kel
xx

∂B
, (24)

as stated above. We emphasize that this conclusion is
rather natural: kph

xx and kch
xx should apparently be field

independent. The Hall relaxation time τH is known to be
field independent in the normal state. With these results
and using equation (23), τR may be determined from equa-
tion (21) according to

e

m
τR =

∂

∂B

(
kxy
B

)/
∂kxx
∂B

=
∆(kxy/B)
∆kxx

=
kxy(B1)/B1 − kxy(B2)/B2

kxx(B1)− kxx(B2)
· (25)

Once τR is known the remainder of our analysis is straight-
forward:

1. kel
xx(B 6= 0) follows from equation (21) according to

kel
xx(B, T ) =

kxy(B, T )
ωcτR(T )

(26)

using our data for kxy(B).
2. krest

xx is subsequently obtained from equation (17) ac-
cording to

krest
xx (T ) = kxx(B, T )− kel

xx(B, T ) (27)

using kxx(B) and kel
xx(B) at finite magnetic fields. Note

that internal consistency of our analysis requires that
krest
xx is field independent.

3. The zero field thermal conductivity kxx(B = 0) follows
from equation (17) according to

kel
xx(B = 0, T ) = kxx(B = 0, T )− krest

xx (T ) (28)

using the zero field data for kxx. As another check
for internal consistency, kxx(B = 0) may also be de-
termined directly from equation (21) by extrapolating
B/kxy to B = 0.
The results of this data analysis will be shown and

discussed in the next section.

7 Discussion

7.1 General conclusions

Several conclusions can be drawn from our experimen-
tal results already without a detailed data analysis. First
of all, our experiments clearly demonstrate that the elec-
tronic quantity kxy increases strongly below Tc in YBCO
and in BSCCO. Since the superfluid does not transport
heat and since the vortex contribution to kxy is negli-
gibly small, this increase must be due to an increase of
the QP contribution to kxy. Since the number (density)
nQP of QPs decreases with decreasing temperature be-
low Tc the increase of kxy requires that the QP relaxation
time increases below Tc so strongly that the decrease of
nQP is overcompensated. This conclusion holds irrespec-
tive of whether kxy ∝ τ2 as in conventional metals or
whether kxy ∝ ττH. It also does not rely on the validity of
the Wiedemann Franz law. The strong increase of τ be-
low Tc provides strong evidence for an electronic origin of
the in-plane scattering processes: If electron phonon scat-
tering was the main source of scattering, the phononic
thermal conductivity would increase below Tc, but not
the electronic one. In particular, the mean free path of
the QPs would not be strongly enhanced below Tc. We
note that our findings are in agreement with the results of
photoemission studies, which reveal well defined QPs be-
low Tc in contrast to the strongly damped excitations of
the normal state [57,58]. Thus, the existence of well de-
fined QPs below Tc as inferred from photoemission, mi-
crowave conductivity and thermal conductivity receives
direct and unambiguous confirmation from the thermal
Hall effect.

A further important observation is that the upturn of
kxy is found in both, YBCO and BSCCO. This suggests
that the corresponding increase of the relaxation time is a
generic feature of the cuprates. The much weaker overall
enhancement in BSCCO compared to YBCO must then be
attributed to the stronger impurity scattering in BSCCO,
which sets a cutoff to the increase of the relaxation time.

7.2 Electronic heat transport in the CuO2-planes

In this section we describe in detail the results of the data
analysis discussed above. The thermomagnetic separation
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crucially exploits the magnetic field dependence of kxx.
It is therefore applicable only below Tc (and above about
20–30 K), where kxx is magnetic field dependent, and it
is reliable only for YBCO, since in BSCCO the field de-
pendence of kxx is weak. Therefore we concentrate in this
section on YBCO.

7.2.1 Hall angle

The thermal Hall relaxation time τR as obtained from
our data below Tc using equation (25) is shown in Fig-
ure 15. The values obtained for different magnetic fields
coincide within the experimental accuracy, consistent with
τR being magnetic field independent. The field indepen-
dence of τR is compatible with the normal state behavior
of the Hall relaxation time τH, which is also found to be
B-independent. Note that the error in τR increases be-
low 30 K, since kxx hardly depends on the magnetic field
in this regime and therefore the data analysis becomes
difficult.

As a check of our result for τR we have also deter-
mined τH = ω−1

c σxy/σxx for the same sample from mea-
surements of σxy and σxx in the normal state. We have
extrapolated the normal state data to temperatures below
Tc by using linear fits to ρxx and R−1

H separately, which
vary linearly with temperature with high accuracy (see
Fig. 5). Subsequently the electrical Hall angle below Tc

has been calculated from these fit functions. The result of
this extrapolation is also shown in Figure 15. Remarkably,
τR and τH have the same temperature dependence, given
by τ−1

R ∝ τ−1
H ∝ T 2.

Regarding the absolute values, τR appears to be larger
than τH by roughly a factor of order 2 (see Fig. 15). How-
ever, this discrepancy can be explained by taking into ac-
count the presence of CuO-chains: τR as extracted from
the thermal transport data is clearly unaffected by the
presence of the CuO-chains since only kxy and the mag-
netic field dependence of kxx enter. σxy is obviously also
unaffected by the CuO-chains. In contrast, σxx does have
a contribution from the CuO-chains, i.e.

σxx = σpl
xx + 〈σch

xx〉, (29)

where σpl
xx is the electrical conductivity of the CuO2-planes

and 〈σch
xx〉 is an average of the chain contribution appro-

priate for a twined crystal. With σpl
xx ≈ 〈σch

xx〉 [33] we
conclude that

eτH
m

=
1
B

σxy
σxx

=
1
B

σxy

σpl
xx + 〈σch

xx〉
(30)

is underestimated by a factor of order 2 compared to τR.
Correcting the normal state data for this factor we find
excellent agreement between τH and τR, both regarding
the temperature dependence as well as the absolute values,
i.e. our data tell τR ' τH. A similar conclusion based on
a different analysis of the thermal Hall effect in YBCO
has recently been reported by Zhang et al. [50]. Note that
the result τR ' τH strongly supports the procedure of our
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of B1 and B2. T > Tc: m/eτH obtained from σxy and σxx.
Dashed line: extrapolated normal state data. Solid line: ex-
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of the extrapolated Hall relaxation rate from a T 2-behavior at
low temperatures is a result of our extrapolation procedure, in
which ρ and R−1

H have both been fitted by straight lines.

data analysis. Since τR ' τH we shall no longer distinguish
between τR and τH in the following.

Based on an analysis of vortex motion and scattering
of QPs on vortices Harris et al. [60] have reached the con-
clusion that the Hall conductivity σxy shows a dramatic
change below Tc. This is not in contradiction to our re-
sults, since σxy ∝ ττH so that the strong increase of σxy
below Tc results from τ (see below). No direct information
on the behavior of τH itself is obtained from their analysis.

7.2.2 Electronic thermal conductivity

As a result of our data analysis we show in Figure 16
kel
xx(B, T ). Note that the zero field thermal conductivity

as obtained from the extrapolation of B/kxy to B = 0 (full
symbols) corresponds well to the result extracted from
equation (28) (open symbols). The extrapolation of B/kxy
to B = 0 is in fact straightforward, since B/kxy varies lin-
early with B as shown below (see Figs. 18 and 19). Our
results confirm explicitly the interpretation inferred previ-
ously from various indirect experimental probes that kel

xx
is strongly enhanced below Tc. Our result for kel

xx is also
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in good agreement with theoretical calculations [59]. The
overall magnitude of kel

xx near Tc is of order 1–1.5 W/Km
in YBCO and of order 0.6 W/Km in BSCCO. Compar-
ing this with the total thermal conductivity tells that kxx
is dominated by the phononic contribution in the normal
state.

The implications of the increase of kel
xx below Tc are

straightforward. According to standard transport theory
kel
xx ∝ TnQPτ . Regardless of the precise form of the su-

perconducting order parameter, the number density nQP

of QPs decreases with decreasing temperature below Tc so
that τ must increase strongly with decreasing temperature
in order to overcompensate the decrease of nQP.

Based on measurements of the thermal Hall effect
Krishana et al. have previously determined the (zero field)
electronic thermal conductivity of the CuO2-planes in
YBCO [26]. Their analysis exploits the (asymmetric) scat-
tering of QPs on vortices as calculated by Cleary [61] as
well as a variational treatment of the Boltzmann-equation
for the QPs. Their results for the zero field thermal con-
ductivity of the CuO2-planes are similar to ours.

7.2.3 Two relaxation times below Tc

It is certainly very remarkable that τH remains field inde-
pendent below Tc and has the same temperature depen-
dence as above Tc, whereas τ is strongly enhanced below
Tc and magnetic field dependent (see below). This should
provide important information for the theoretical under-
standing of the transport phenomena in the cuprates. We
therefore discuss this issue in some more detail here.

Proposals for the different temperature dependen-
cies of τ ∝ T−1 and τH ∝ T−2 have invoked quite
different scenarios for the characteristics of the charge
carriers. These approaches range from conventional Fermi
liquid like quasiparticles to more exotic spin-charge sepa-
rated entities [40], and fermionic currents with well defined
charge conjugation symmetry [41,42]. A common feature
of Fermi liquid like theories is the necessity of an electronic
scattering mechanism which leads to a highly anisotropic
scattering rate for different momenta on the Fermi sur-
face [43–48]. In these theories the terminology of hot spots
and cold spots has been introduced for those regions on the
Fermi surface where the scattering rate is largest or small-
est, respectively. Hot spots arise due to scattering pro-
cesses from antiferromagnetic spin fluctuations with large
momentum transfer q ∼ Q = (π, π). Electrons on regions
of the Fermi surface which are connected by Q thereby
suffer the strongest magnetic scattering and thus acquire
the shortest lifetime. For the Fermi surfaces of cuprate su-
perconductors these hot regions are located near (0, π) and
the equivalent points in the Brillouin zone. The cold spots,
i.e. the regions of the Fermi surface with the longest elec-
tronic lifetimes, are located instead near the Fermi surface
crossing along the Brillouin zone diagonal. In particular in
the cold spots models it has been argued that it is the long
lived quasiparticles alone which determine the transport
properties [47,49]. Ioffe and Millis [47] pointed out that a
conventional Fermi liquid like T 2 dependence of the the
electronic relaxation rate combined with phase restrictions
to the cold Fermi surface regions explains simultaneously
the T 2 temperature dependence of the Hall angle as well
as the linear T dependence for the relaxation rate in the
longitudinal conductivity (see below).

None of the above mentioned theories has so far been
extended to the superconducting state. It appears, how-
ever, that the cold spots model is a natural candidate the-
ory for explaining the continuing T 2 dependence of the
Hall relaxation time when passing through Tc as concluded
from the analysis of our thermal conductivity data. This is
because the dx2−y2 gap symmetry allows for gapless exci-
tations along the nodal directions, i.e. along the Brillouin
zone diagonals passing through the cold spots. Inspecting
the model of Ioffe and Millis [47] in more detail we note
that their QP-scattering rate Γ is given by

Γ (Θ, T ) =
1
4
Γ0 sin2(2Θ) +

1
τFL
· (31)

Here Θ parameterizes the direction in k-space with Θ = 0
for k along (π, π). τ−1

FL ∝ T 2 is a Fermi-liquid like scat-
tering rate relevant for the QPs in the direction along the
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Brillouin zone diagonal. Γ0 is an anomalous temperature
independent scattering rate, active at all other parts of
the Fermi surface. The dc-resistivity and Hall effect in
this model are given by

σxx ∝
√
τFL

Γ0
and tanαH ∝ ωcτFL. (32)

Obviously, the Hall angle is unaffected when a dx2−y2-
gap opens below Tc. On the other hand, in order to ob-
tain a strong increase of the transport scattering time
τ ∝ σxx ∝

√
τFL/Γ0 below Tc one has to assume that Γ0

collapses below Tc. This implies well defined QPs in these
directions below Tc, which indeed have been observed in
photoemission studies [58].

We finally comment on a theory by Coleman et al.
[41,42], who have proposed that the need to distinguish
two relaxation times in the cuprates may be understood in
terms of scattering processes which discriminate between
currents that are even or odd under charge conjugation. In
their model kel

xx ∝ τH (!), whereas tanαR = ωcτ , i.e. the
role of τ and τH are interchanged for the thermal transport
effects. For the electrical transport properties they still
find σxx ∝ τ and tanαH ∝ τH. However, note that in
our data analysis we may replace τ → τH and τH → τ in
equation (21) and we would come to the same conclusions
but with the role of τ and τH interchanged. In particular,
our analysis would give that the behavior of τ below Tc

is that shown in Figure 15. This is, however, clearly in
disagreement to the observation that these data agree well
with the extrapolated values of the Hall angle extracted
from the electrical transport data above Tc. Therefore,
our data are not in favor of the results by Coleman et al.
Nevertheless, a more detailed analysis of the temperature
dependence of kxy in the normal state should shed more
light on this issue.

7.3 Chain and phonon contributions to kxx

krest
xx as obtained from our analysis is shown in Figure 17.

We find that krest
xx is indeed independent of the mag-

netic field, consistent with our conclusion that both, kch
xx

and kph
xx are magnetic field independent. krest

xx shows a
pronounced maximum below Tc, too. It is not possible
to attribute this maximum unambiguously to kph

xx or to
kch
xx without further information, since both contributions

could in principle account for a maximum. However, more
can be learned from data on untwined single crystals of
YBCO. In particular, the chain contribution kch

xx to the
thermal conductivity has been determined from the a-b
anisotropy of kxx in a detwined crystal of YBCO [7,11].
Remarkably, kch

xx shows a pronounced maximum below Tc

with an overall temperature dependence similar to that
found here for krest

xx (see Fig. 17). This suggests that the
maximum of krest

xx is due to the chain contribution.
Minor differences between kch

xx and krest
xx appear in a

more detailed comparison. For example, the maximum
of krest

xx is at somewhat higher temperatures than that
of kch

xx of reference [11]. Moreover, the relative height of
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the maximum is smaller. However, firstly krest
xx contains

also the phononic contribution, and therefore the relative
variations must be smaller than those of kch

xx. Secondly,
in a twined crystal defect scattering should be more pro-
nounced. Since the maximum of kch

xx must be attributed
to an increase of the QP relaxation time similar to that
in the CuO2-planes we suggest that this defect scattering
leads to a cutoff for the increase of the QP relaxation time
on the chains at lower temperatures, resulting in a smaller
height of the maximum and a shift to higher temperatures.

The magnitude of the chain contribution to both,
σxx and kxx is indeed surprising. Naively, one expects
that even very weak impurity scattering on the chains
suppresses the chain contribution dramatically. Neverthe-
less, the data on the resistivity and thermal conductivity
anisotropy are unambiguous in signaling a sizeable contri-
bution.

Our results have also implications for the phononic
contribution to the heat current. Our data suggest that
kph
xx is field independent. We note that the latter conclu-

sion has recently been drawn on the basis of low temper-
ature results in Bi-based HTSCs [50]. In principle, kph

xx

can be determined experimentally from krest
xx , if one mea-

sures kchain
xx from the in-plane anisotropy. This requires
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measurements and an analysis similar as presented here
on a detwined crystal.

7.4 Magnetic field dependence of k

The magnetic field dependence of kxy/B reflects the B-
dependence of the electronic heat current below Tc. We
recall that kxy/B has the same B-dependence as kel

xx (and
thus as kxx) (see Eqs. (22, 24) and Fig. 14). For a detailed
analysis of the field-dependence of the electronic heat cur-
rent below Tc it is therefore convenient to analyse kxy/B.
We show a representative selection of data in Figures 18
and 19, where we plot B/kxy versus B. Obviously, B/kxy
varies linearly with B, i.e.

B

kxy
= c1 + c2B, (33)

where c1 and c2 depend on temperature, but are field-
independent. Our data show that (1) close to Tc and in
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curves, which signal a rather strong impurity scattering rate
(see text).

the normal state B/kxy ' c1 (i.e. kxy ∝ B as expected).
(2) For T � Tc, c1 is very small in YBCO, but it stays
large in BSCCO, where the constant and the linear term
are of comparable magnitude.

A magnetic field dependence of B/kxy can arise from
a field dependence of either the QP-scattering time τ or
of the QP-density nQP (or of both). One way to see this
is by noting that

kxy = kel
xxωcτH = LTσxxωcτH = LT

nQPe
2τ

m∗
ωcτH. (34)

This yields

B

kxy
= C(T )

1
nQP

1
τ
, (35)

where C(T ) = m∗2/LTe3τH depends only on temperature.
We discuss briefly the origin of a magnetic field depen-

dence of nQP and of τ . It seems by now settled that the
cuprates are d-wave superconductors, in particular due to
an overwhelming body of evidence from experiments sen-
sitive to the phase of the order parameter [62,63]. It has
been realized recently that the QP excitation spectrum
of an unconventional superconductor with nodes of the
order parameter is changed when a magnetic field is ap-
plied [64]. The reason is that the circulating supercurrents
around the vortices and the corresponding Doppler shift
of the QP excitation energies lead to an increase of the
number of QPs. In a pure d-wave superconductor the en-
hancement has been predicted to be proportional to

√
B.

Experimentally such an enhancement has been observed
in studies of the specific heat at low temperatures [65–68].
At high temperatures an enhancement of nQP by an ap-
plied magnetic field should still be present. However, one
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expects that in this case the QP-density in a d-wave su-
perconductor is already large in zero magnetic field due
to thermal excitation so that the change of nQP due to an
applied magnetic field is not so important.

A magnetic field dependence of the scattering time
of the QPs below Tc may arise from QP scattering on
vortices [10,22,26,61,69–71]. We introduce the QP vortex
scattering rate as

τ−1
v = ΣvnvvQP = Σv

B

Φ0
vQP. (36)

Here vQP is the QP velocity, Σv is the scattering cross sec-
tion of a vortex (per unit length) and nv = B/Φ0 is the
vortex (areal) density. We assume also that the vortices
are disordered so that no Bloch-states form. If the scatter-
ing of the QPs is via Andreev-scattering on the velocity
field associated with the vortices [71] one expects

Σv ∝ av ∝
√
Φ0

B
(37)

where av is the (average) distance between vortices. This
yields τ−1

v ∝
√
B. On the other hand, one may also imag-

ine scattering of QPs on vortices with a B-independent
scattering cross section, e.g. due to scattering of QPs on
the vortex cores. This leads to τ−1

v ∝ B.
We write for the total scattering rate below Tc:

τ−1 = τ−1
0 + τ−1

i + τ−1
v . (38)

Here τ−1
0 is an impurity scattering rate independent of

B and T and τ−1
i describes the same inelastic scat-

tering processes as in the normal state. τ−1
i collapses

below Tc according to our results. Apparently, our ex-
perimental results ((Eq. (33)) can be understood if we
assume that τv ∝ B and that nQP is field independent.
We note that it has recently been pointed out by Vekhter
and Houghton [70] that indeed at high temperatures the
main effect of vortices is to introduce a new scattering
time. Our results are not in favor of Andreev-scattering
of QPs on vortices, since τv ∝ B implies a B-independent
scattering cross section.

Accepting that in the temperature range of interest the
magnetic field dependence of kxy/B and of kxx can be at-
tributed to a magnetic field dependence of the scattering
rate via QP-vortex-scattering, while nQP is roughly B-
independent, it is possible to explain the differences of the
magnetic field dependence between YBCO and BSCCO.
Since according to our findings τ−1

i collapses below Tc in
both, YBCO and BSCCO, we have τ−1 ≈ τ−1

0 + τ−1
v (B)

sufficiently far below Tc. Apparently, the larger value of
c1 in BSCCO (see Eq. (33)) implies that τ−1

0 is much
more important in BSCCO than in YBCO. This is consis-
tent with the stronger impurity scattering (larger normal
state resistivity) in BSCCO. This large impurity scatter-
ing rate has several consequences: (1) It serves as a cutoff
for the relaxation time below Tc and it decreases the total
electronic thermal conductivity, so that phonons are more
important in BSCCO. This explains why the maximum of
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kxx below Tc is much less pronounced in BSCCO than in
YBCO. (2) The scattering on vortices does not dominate
the total scattering rate in BSCCO and therefore the mag-
netic field dependence of kxx and the non-linear behavior
of kxy are much weaker in BSCCO than in YBCO. It is
only at high magnetic fields where non-linear behavior of
kxy occurs in BSCCO, since the vortex scattering becomes
more important with increasing B.

The weak impurity scattering in YBCO allows for a
rather straightforward estimate of the inelastic scattering
time τi below Tc. For weak impurity scattering we have
τ−1 ' τ−1

i + τ−1
v = τ−1

i + γB where γ is a constant. This
yields

B

kxy
=

C(T )
nQP(T )

(
τ−1
i + γB

)
(39)

from equation (35). If we assume that γ is independent of
temperature, τi(T ) can be extracted from the slope and
the intersection of the B/kxy-curves (to within the con-
stant factor γ). The result is shown in Figure 20. It con-
firms that τi increases strongly below Tc. Note that no
assumption on the temperature dependence of the num-
ber of QPs is necessary for this analysis. Vice versa, from
τ and kel

xx the QP-density can be calculated (see Fig. 20).
We finally mention a related topic. It has been pointed

out by Simon and Lee [51] that in a magnetic field the QP
spectrum and dynamics in a 2 dimensional d-wave super-
conductor exhibits scaling behavior at low temperatures
with respect to B1/2. In particular, kxy has been found
to scale according to kxy = T 2F (αT/B1/2). Here α is a
constant and F is a scaling function. Our low temperature
data in YBCO depend on temperature, but not on mag-
netic field for B ≥ 2−3 T, which is inconsistent with such
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a scaling behavior. However, defect scattering is expected
to change the possible scaling behavior strongly [69].

7.5 Normal state behavior of k

7.5.1 Two relaxation times

The necessity to distinguish two relaxation times for the
thermal transport effects is consistent with a more detailed
analysis of our normal state data. We assume that the
carrier densities and the effective masses are comparable
in YBCO and BSCCO, since both samples are optimally
doped. Using σxx = ne2τ/m and σxy/σxx = ωcτH, the
data of Table 1 yield at 100 K:

σY
xx

/
σBi
xx ' τY

/
τBi ' 4 and τY

H

/
τBi
H ≈ 1. (40)

For the ratio of the transverse thermal conductivities we
find from our experiments

kY
xy

/
kBi
xy ≈ 4. (41)

According to equation (40) this result is consistent with
kxy ∝ ττH. In contrast, in standard transport theory
kxy ≈ τ2 and thus kYxy/k

Bi
xy ∝ (τY/τBi)2 should be of

order 16, in disagreement with the experimental results.
A more detailed investigation of the normal state be-

havior of the thermal effects with respect to the temper-
ature dependence of kxy is in progress. Such an analysis
should provide further important information. In partic-
ular, kxy ∝ TττH ∝ T−2 if two relaxation times must be
used; instead kxy ∝ Tτ2 ∝ T−1 if only one relaxation time
is necessary. We mention that our data are so far compat-
ible with both temperature dependences when analysed
over the limited temperature range of our measurements
in the normal state.

7.5.2 Electronic thermal conductivity

We discuss here our results for kel
xx above Tc. We have not

focused on this temperature range since our data analysis
requires kxx to be field dependent, which is the case only
below Tc. We show in Figure 21 kel

xx as calculated from
kxy and the Hall angle according to (see Eq. (20))

kel
xx = kxy

σxx
σxy
· (42)

Note that in order to obtain the plane contribution in
YBCO kel

xx as given in Figure 21 should be divided by
a factor of order 2, since σxx in equation (20) has an
average contribution from the CuO2-chains, i.e. σxx =
σpl
xx + 〈σch

xx〉 ≈ 2σpl
xx, as discussed above. We have, how-

ever, not corrected for this factor of 2, since the absolute
value of kel

xx as calculated from equation (42) is uncertain
within a factor of order 2 anyhow due to the uncertainties
from the geometric factors in kxy, σxy and σxx. Regard-
ing the temperature dependence of kel

xx errors in the geo-
metric factor are unimportant. We find that kel

xx increases
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in the upper and lower panel. In order to obtain the plane con-
tribution of kel

xy the data for YBCO should be divided by a
factor of order 2. (See text.)

(roughly linearly) with temperature. Note that with the
transverse Lorenz number Lxy = kxy/Tσxy we may also
write equation (42) as

kel
xx = LxyTσxx. (43)

Since in YBCO σxx ∝ T−1 and the residual resistivity is
small we conclude that Lxy increases similarly as kel

xx with
temperature, roughly as Lxy ∝ T . An increase Lxy ∝ T
in YBCO up to a temperature of 300 K has recently been
reported also by Zhang et al. [30].

This increase of kel
xx and Lxy with temperature is

unusual and so far not understood. A temperature
dependence of the Lorenz number at intermediate tem-
peratures of order 100–200 K occurs also in conventional
metals and is due to the influence of inelastic (usually elec-
tron phonon) scattering processes [56]. However, in the
cuprates the strong temperature dependence of Lxy per-
sists up to 300 K. At these temperatures the Wiedemann
Franz law is usually valid in conventional metals. Note
that the failure of the Wiedemann Franz law found here
implies that a calculation of the temperature dependent



B. Zeini et al.: Thermal conductivity and thermal Hall effect in Bi- and Y-based high-Tc superconductors 207

electronic thermal conductivity from the resistivity on the
basis of the Wiedemann Franz law with Lxx = L0 is not
possible.

8 Summary

We have presented a study of the thermal conductivity
kxx and of the thermal Hall effect kxy in Y- and Bi-based
high temperature superconductors. In both materials kxx
and kxy are found to increase below Tc and to show a
maximum in their temperature dependence. In addition
unusual magnetic field dependence occurs in the supercon-
ducting state: The maximum of kxx is strongly suppressed
by a magnetic field and kxy varies non-linearly with B.

In the high-Tc superconductors kxx has an electronic
and a phononic contribution. The latter dominates in the
normal state. In contrast, the transverse thermal conduc-
tivity kxy is purely electronic. The strong increase of kxy
below Tc therefore gives direct evidence for a strong en-
hancement of the quasiparticle contribution to the heat
current and thus for a strong increase of the quasiparti-
cle mean freepath. From this two important conclusions
emerge: Firstly, the main source of quasiparticle scattering
in the cuprates is electronic in origin. Secondly, our results
confirm that below Tc well defined quasiparticles exist in
Bi2Sr2CaCu2O8+δ and YBa2Cu3O7−δ, in agreement with
results from photoemission and microwave conductivity.

Using kxy and the magnetic field dependence of kxx we
have separated the electronic thermal conductivity (kel

xx)
of the CuO2-planes from the phononic thermal conduc-
tivity (kph

xx). In YBa2Cu3O7−δ kel
xx shows a pronounced

maximum in the superconducting state. This maximum
is much weaker in Bi2Sr2CaCu2O8+δ, which we attribute
to stronger impurity scattering in Bi2Sr2CaCu2O8+δ. An
additional magnetic field independent contribution to the
maximum of kxx occurs in YBa2Cu3O7−δ, reminiscent of
the contribution of the CuO-chains, as determined from
the anisotropy in untwined single crystals. Our data anal-
ysis reveals that below Tc as in the normal state a trans-
port (τ) and a Hall (τH) relaxation time must be distin-
guished: The inelastic (i.e. temperature dependent) con-
tribution to τ is strongly enhanced in the superconducting
state, whereas τH displays the same temperature depen-
dence above and below Tc.

The unusual magnetic field dependence of kxx and kxy
below Tc can be attributed to a B-dependent QP scat-
tering time. We suggest that the origin is the scatter-
ing of quasiparticles on vortices. Our data give evidence
that the corresponding QP-vortex scattering rate varies
linearly with B.

Finally, we have calculated the electronic thermal con-
ductivity from the transverse effects also in the normal
state. We find that kel

xx and the (transverse) Lorenz num-
ber increase roughly linearly with temperature. This im-
plies in particular that the Wiedemann-Franz law is not
valid in the normal state.
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